skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Briceño, Raimundo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study and classify proper q -colourings of the ℤ d lattice, identifying three regimes where different combinatorial behaviour holds. (1) When $$q\le d+1$$ , there exist frozen colourings, that is, proper q -colourings of ℤ d which cannot be modified on any finite subset. (2) We prove a strong list-colouring property which implies that, when $$q\ge d+2$$ , any proper q -colouring of the boundary of a box of side length $$n \ge d+2$$ can be extended to a proper q -colouring of the entire box. (3) When $$q\geq 2d+1$$ , the latter holds for any $$n \ge 1$$ . Consequently, we classify the space of proper q -colourings of the ℤ d lattice by their mixing properties. 
    more » « less